在硬件设计中,PCB设计是其中非常重要、不可或缺的一个步骤。对于一些简单的产品,PCB设计可能只是简单地把所有的器件、网络对应地连接起来。而对于高速电路、射频电路,PCB的设计直接影响到产品的功能是否正常、产品是否能满足入市的要求。下面,将从PCB设计的流程、PCB布局、PCB布线、PCB设计检查表四个方面做介绍。PCB设计的流程 PCB的质量直接决定了一款电子产品的好与坏,那么一个好的PCB设计流程就至关重要。很多工程师认为,PCB设计就是简单地把所有的元器件摆好之后,再把所有相关的器件引脚连接在一起。这是一种狭隘的观点,一个好的PCB设计流程从原理方案设计时就已经开始,比如如何选择合适的方案、选择合适的电子元器件等等。具体如下图所示: 具体包含了原理方案设计、原理图网表输出和导入、机械结构图导入、层叠结构设计和编辑、信号完整性(SI)/电源完整性(PI)前仿真、PCB布局、设计约束规则导入、PCB布线、信号完整性(SI)/电源完整性(PI)/电磁兼容性(EMC)/热后仿真、设计可制造性(DFM)检查、生成生产文件(Gerber)。这些工作可能是一个工程师完成的,也有可能是多个工程师合作完成的。当然,并不是每一个产品的PCB设计流程都是一样的,具体的产品可以根据这个流程进行适当的细化、增加或者删减。 下面将就PCB设计流程中的几个重要步骤做进一步的介绍。 PCB布局 在设计中,布局是一个重要的环节。布局结果的好坏将直接影响布线的效果,因此可 以这样认为,合理的布局是 PCB 设计成功的第一步。简单的理解,PCB布局就是把所有的元器件按照功能结构、模块化、满足DXF的要求、满足顺畅布局布线等原则进行。 考虑整体美观 一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。在一个 PCB 板上,组件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。 图 布局好的PCB 上面说到的只是一些大的方向和要求,其实PCB布局需要考虑到的因素非常多,比如常常会按照“先大后小,先满足结构后满足美观,先难后易”的布置原则,就是把重要的核心单元电路、高速电路、射频电路、核心元器件、接口电路优先布局,然后再把一些辅助性的电路布局好。在进行 PCB布局设计时具体可以遵循以下原则进行布局。 1、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件。布局应尽量满足以下要求: 在没有特殊要求时,使布线的总长度尽可能短,关键信号线最短; 去耦电容的布局时,依据电容的大小尽量依照越小的电容越靠近IC的电源管脚,并使之与电源和地之间形成的回路最短 ; 减少信号回流路径,不要出现跨分割现象。 2、元器件的排列首先要满足功能的要求,同时还要便于后续调试和维修,即小元件周围不能放置大元件、需调试的元器件周围要有足够的空间,太紧凑就会导致无法下烙铁。 3、相同结构电路部分,尽可能采用“对称式”标准布局;按照均匀分布、重心平衡、版面美观的标准优化布局。 4、同类型插装元器件在X或Y方向上应朝一个方向放置。同一种类型的有极性分立元件也要尽量在X或Y方向上保持一致,便于生产和检验。 5、发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。除了温度传感器,三极管也属于对热敏感的器件。 6、高电压、大电流信号与小电流,低电压的弱信号完全分开。 7、模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。 8、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起,以便于将来的电源路径设计以及与其它电源平面分割开。 对于一些特殊元器件的位置在布局时一般要遵守以下原则: 1、DC/DC 变换器、开关元件和整流器应尽可能靠近变压器放置,整流二极管尽可能靠近调压元件和滤波电容器。以减小其线路长度。 2、电磁干扰(EMI)滤波器要尽可能靠近 EMI 源。尽可能缩短高频元器件之间的连接,设法减少他们的分布参数及和相互间的电磁干扰。易受干扰的元器件不能相互离得太近,输入和输出应尽量远离。 3、对于电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些经常用到的开关,在结构允许的情况下,应放置到手容易接触到的地方。元器件的布局要均衡,疏密有度。 4、发热元件应该布置在 PCB 的边缘,以利散热。如果 PCB 为垂直安装,发热元件应 该布置在 PCB 的上方。热敏元件应远离发热元件。 5、在电源布局时,尽量让器件布局方便电源线布线走向。布局时需要考虑减小输入电源回路的面积。满足流通的情况下,避免输入电源线满板跑,回路圈起来的面积过大。电源线与地线的位置良好配合,可降低电磁干扰的影响。如果电源线和地线配合不当,会出现很多环路,并可能产生噪声。 6、高、低频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。所以在元件布局时,应将数字电路、模拟电路以及电源电路按模块分开布局。将高频电路与低频电路有效隔离,或者分成小的子电路模块板,之间用接插件连接。 7、布局中还应特别注意强、弱信号的器件分布及信号传输方向路径等问题。为将干扰减轻到最小程度,模拟电路和数字电路分隔开之后,保持高、中、低速逻辑电路在 PCB 上也要用不同区域,PCB 板按频率和电流开关特性分区。噪声元件与非噪声元件要距离远一些。热敏元件与发热元件距离远一些。低电平信号通道远离高电平信号通道和无滤波的电源线。将低电平的模拟电路和数字电路分开,避免模拟电路、数字电路和电源公共回线产生公共阻抗耦合。 PCB布线 当原理图网表导入到PCB设计软件中时,所有的元器件相互连接的引脚都是通过“鼠线”连接的,这些并没有网络属性意义。如下图所示: 图 鼠线连接的PCB 这需要工程师把它们按照相应的设计约束规则相互连接起来。只有当所有的网络连接在一起时,它们才有电气特性。布线就是这样一个作用,即把所有的信号网络、电源网络和地网络都连接好。 在PCB布线时需要使用到设计约束规则,这些规则就包含信号网络的线宽、差分对内的线间距、差分对之间的等长误差、传输线之间的间距要求、传输线的总长度、传输线对内或者对间的分段等长要求等等。如下图所示为Intel某平台对PCIE设计的要求: 图Intel某平台对PCIE设计的要求 按照相应的要求完成布局、布线之后,就得到了一份错落有致的PCB版图,如下图所示为连接好的PCB版图: 图 连接好的PCB版图 PCB设计完成之后,就可以按照生产要求输出生产文件,一般包括PCB生产文件、PCBA生产文件、钢网文件等等。 PCB设计检查表 在正式生成PCB生产文件之前,一般都会对PCB设计进行详细的检查,包括DFM、SI、PI、EMC、Thermal、可靠性等等检查。如何检查呢?有的公司是通过工具进行检查,有的公司是通过各个工程师自己检查,不管是哪一种,其实都是依照一定的规则进行检查分析,也就是大家通常所说的PCB设计检查。
这是一个常规的PCB 设计检查表,每一类产品使用的检查表大同小异。一般建议按照自身产品的特定制作特定的PCB设计检查表。 |