基准点放置: 一般原则 : 过SMT设备加工的单板必须放置基准点。单面基准点数量≥3。 单面布局时,只需元件面放置基准点。. A5 I5 ^0 L- z1 m+ P PCB双面布局时,基准点双面放置。双面放置的基准点,除镜像拼板外,正反两面的基准点位置要求基本一致。见下图。 (1) 拼板的基准点放置 拼板需要放置拼板基准点、单元基准点。 拼板基准点和单元基准点数量各为三个。在板边呈“L”形分布,尽量远离。拼板基准点的位置要求见下图A。 采用镜相对称拼板时,辅助边上的基准点必须满足翻转后重合的要求,参见下图B (2) 单元板的基准点放置 基准点数量为三个,在板边呈“L”形分布,各基准点之间的距离尽量远。基准点距离板边必须大于5mm,如不能保证四个边都满足,则至少要保证传送边满足要求。 十、时钟PCB走线设计的注意事项 1. 布局 · 时钟晶体和相关电路应布置在PCB的中央位置并且要有良好的地层,而不是靠近I/O接口处。不可将时钟产生电路做成子卡或者子板的形式,必须做在单独的时钟板上或者承载板上。 如下图所示,绿色框中部分下一层最好不要走线 . 在PCB时钟电路区域只布与时钟电路有关的器件,避免布设其他电路,晶体附近或者下面不要布其他信号线:在时钟发生电路、晶体下使用地平面,若其他信号穿过该平面,违反了映像平面功能,如果让信号穿越这个地平面的话,就会存在很小的地环路并影响地平面的连续性,这些地环路在高频时将会产生问题。 · 对于时钟晶体、时钟电路,可以采用屏蔽措施进行屏蔽处理; · 若时钟外壳为金属,则PCB设计时一定要在晶体下方铺铜,并保证此部分与完整的地平面有良好的电气连接(通过多孔接地)。 · 时钟晶体下面铺地的好处:晶体振荡器内部的电路会产生射频电流,如果晶体是金属外壳封装的,直流电源脚是直流电压参考和晶体内部射频电流回路参考的依靠,通过地平面释放外壳被射频辐射产生的瞬态电流。总之,金属外壳是一个单端天线,最近的映像层、地平面层有时两层或者更多层做为射频电流对地的辐射耦合作用是足够的。晶体下铺地对散热也是有好处的。 时钟电路和晶体下铺地将提供一个映像平面,可以降低对相关晶体和时钟电路产生共模电流,从而降低射频辐射,地平面对差模射频电流同样有吸收作用,这个平面必须通过多点连接到完整的地平面上,并要求通过多个过孔,这样可以提供低的阻抗,为增强这个地平面的效果,时钟发生电路应该与这个地平面靠近。 · SMT封装的晶体将比金属外壳的晶体有更多的射频能量辐射:因为表贴晶体大多是塑料封装,晶体内部的射频电流会向空间辐射并耦合到其他器件。 1·共用时钟走线对快速上升沿信号及时钟信号采用辐射状拓扑连接好于采用单个公共驱动源的网络串接,每个走线应该根据其特性阻抗采取端接措施来布线。2.时钟传输线要求及PCB分层时钟走线原则:在紧邻时钟走线层安排完整的映像平面层,减小走线的长度并进行阻抗控制。 错误的跨层走线和阻抗不匹配会导致: · 走线使用过孔和跳转导致映像回路的不完整性; · 映像平面上由于器件信号管脚上电压随着信号的变化而变化产生的浪涌电压; · 如果走线没有考虑3W原则的话,不同时钟信号会引起串扰;时钟信号的布线 · 时钟线一定要走在多层PCB板的内层。并且一定要走带状线;如果要走在外层,只能走微带线。 · 走在内层能保证完整的映像平面,它可以提供一个低阻抗射频传输路径,并产生磁通量,以抵消它们的源传输线的磁通量,源和返回路径的距离越近,则消磁就越好。由于增强了消磁能力,高密PCB板的每个完整平面映像层可提供6-8dB的抑制。 · 时钟布多层板的好处:有一层或者多层可以专门用于完整的电源和地平面,可以设计成好的去藕系统,减小地环路的面积,降低了差模辐射,减小了EMI,减小了信号和电源返回路径的阻抗水平,可以保持全程走线阻抗的一致性,减小了邻近走线间的串扰等。 十一、PCB叠层设计 在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB板EMC性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB板层叠结构的相关内容。对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题; 层的排布一般原则: 1、确定多层PCB板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。 2、元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;敏感信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间。这样两个内电层的铜膜可以为高速信号传输提供电磁屏蔽,同时也能有效地将高速信号的辐射限制在两个内电层之间,不对外造成干扰。 3、所有信号层尽可能与地平面相邻; 4、尽量避免两信号层直接相邻;相邻的信号层之间容易引入串扰,从而导致电路功能失效。在两信号层之间加入地平面可以有效地避免串扰。5、主电源尽可能与其对应地相邻; 6、兼顾层压结构对称。 7、对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则: 元件面、焊接面为完整的地平面(屏蔽); 无相邻平行布线层; 所有信号层尽可能与地平面相邻; 关键信号与地层相邻,不跨分割区。 注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。 8、多个接地的内电层可以有效地降低接地阻抗。例如,A信号层和B信号层采用各自单独的地平面,可以有效地降低共模干扰。 常用的层叠结构: 4层板 下面通过 4 层板的例子来说明如何优选各种层叠结构的排列组合方式。 对于常用的 4 层板来说,有以下几种层叠方式(从顶层到底层)。(1)Siganl_1(Top),GND(Inner_1),POWER(Inner_2),Siganl_2(Bottom)。(2)Siganl_1(Top),POWER(Inner_1),GND(Inner_2),Siganl_2(Bottom)。 (3)POWER(Top),Siganl_1(Inner_1),GND(Inner_2),Siganl_2(Bottom)。显然,方案 3 电源层和地层缺乏有效的耦合,不应该被采用。那么方案 1 和方案 2 应该如何进行选择呢?一般情况下,设计人员都会选择方案 1 作为 4层板的结构。选择的原因并非方案 2 不可被采用,而是一般的 PCB 板都只在顶层放置元器件,所以采用方案 1 较为妥当。但是当在顶层和底层都需要放置元器件,而且内部电源层和地层之间的介质厚度较大,耦合不佳时,就需要考虑哪一层布置的信号线较少。对于方案 1而言,底层的信号线较少,可以采用大面积的铜膜来与 POWER 层耦合;反之,如果元器件主要布置在底层,则应该选用方案 2 来制板。如果采用如图 11-1 所示的层叠结构,那么电源层和地线层本身就已经耦合,考虑对称性的要求,一般采用方案 1。 6层板 在完成 4 层板的层叠结构分析后,下面通过一个 6 层板组合方式的例子来说明 6 层板层叠结构的排列组合方式和优选方法。(1)Siganl_1(Top),GND(Inner_1),Siganl_2(Inner_2),Siganl_3(Inner_3),POWER(Inner_4),Siganl_4(Bottom)。方案 1 采用了 4 层信号层和 2 层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作,但是该方案的缺陷也较为明显,表现为以下两方面。① 电源层和地线层分隔较远,没有充分耦合。② 信号层 Siganl_2(Inner_2)和 Siganl_3(Inner_3)直接相邻,信号隔离性不好,容易发生串扰。(2)Siganl_1(Top),Siganl_2(Inner_1),POWER(Inner_2),GND(Inner_3),Siganl_3(Inner_4),Siganl_4(Bottom)。方案 2 相对于方案 1,电源层和地线层有了充分的耦合,比方案 1 有一定的优势,但是 Siganl_1(Top)和 Siganl_2(Inner_1)以及 Siganl_3(Inner_4)和 Siganl_4(Bottom)信号层直接相邻,信号隔离不好,容易发生串扰的问题并没有得到解决。(3)Siganl_1(Top),GND(Inner_1),Siganl_2(Inner_2),POWER(Inner_3),GND(Inner_4),Siganl_3(Bottom)。相对于方案 1 和方案 2,方案 3 减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案 1 和方案 2 共有的缺陷。① 电源层和地线层紧密耦合。② 每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。③ Siganl_2(Inner_2)和两个内电层 GND(Inner_1)和 POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对 Siganl_2(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。 综合各个方面,方案 3 显然是最优化的一种,同时,方案 3 也是 6 层板常用的层叠结构。通过对以上两个例子的分析,相信读者已经对层叠结构有了一定的认识,但是在有些时候,某一个方案并不能满足所有的要求,这就需要考虑各项设计原则的优先级问题。遗憾的是由于电路板的板层设计和实际电路的特点密切相关,不同电路的抗干扰性能和设计侧重点各有所不同,所以事实上这些原则并没有确定的优先级可供参考。但可以确定的是,设计原则 2(内部电源层和地层之间应该紧密耦合)在设计时需要首先得到满足,另外如果电路中需要传输高速信号,那么设计原则 3(电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间)就必须得到满足。 10层板 PCB典型10层板设计 一般通用的布线顺序是TOP--GND---信号层---电源层---GND---信号层---电源层---信号层---GND---BOTTOM 本身这个布线顺序并不一定是固定的,但是有一些标准和原则来约束:如top层和bottom的相邻层用GND,确保单板的EMC特性;如每个信号层优选使用GND层做参考平面;整个单板都用到的电源优先铺整块铜皮;易受干扰的、高速的、沿跳变的优选走内层等等。 下表给出了多层板层叠结构的参考方案,供参考。 |