霍尔效应传感器 霍尔效应传感器技术最近取得显著进步,准确性和抗噪性显著提高,从而使设计更容易。虽然有了这些进步,但该技术的优势还是仅限于大电流应用,在大电流应用中,霍尔效应传感器的功耗远远低于分流电阻器的功耗。 霍尔效应传感器通过导体周围的磁场强度来计算其电流大小。可实现无损测量电流的目的,霍尔效应传感器通过测量由电流产生的磁场强度来测量流过电感的电流。非常适合用于电流高于200A的情况下,因为对于大电流应用,检测电阻的功耗是非常大的。图5显示了霍尔效应电流测量的基本概念。
图5。霍尔效应传感器示例 公式10表示了导线的电流大小与磁场强度间的关系。带状走线的表示式会略有不同。为简单起见,我们使用该公式来讨论电流与磁场之间的关系。
公式10,导线的电流与磁场之间的关系 μ0是磁场的磁导率。自由空间的磁导率值μo等于4π*10-7 H/m。值r是电感与线性霍尔效应传感器之间的距离(米)。变量I是导体的电流。B是磁感应强度(单位:高斯)。
图6。 图5中电路的侧面轮廓图 从公式10可以看出,磁场强度随导体与传感器之间的距离增加而减小。线性霍尔效应传感器将测量的磁场强度转换成电流或电压输出。传感器的增益以mV/G或mA/G表示。有些测量以特斯拉来表示该增益。1特斯拉等于10,000高斯。 假设流过一条走线(线中心与霍尔效应芯片的中心距离为0.03m)的电流为200A。那么霍尔效应芯片测到的磁场强度是多少?如果传感器的增益为5mV/G,那么传感器的输出电压是多少? 使用式中的关系可知,磁场强度为13.33G。电感器输出的计算结果等于66.67mV。 线性霍尔效应传感器是有源器件,工作电流为3mA-10mA。传感器的平均噪声级约为25mV或5G。因此在低电流或走线与传感器间距较大时,线性霍尔效应传感器并不是个好选择。 电流走线和传感器所在的环境对测量弱磁场具有重要影响。线性霍尔传感器测量的是测试位置的总的磁场强度。传感器附近的其他的电流走线会改变传感器所在位置的磁场,并最终影响测量的精度。另外传感器还会测量环境磁场的变化,开关型电动机或辐射能量的任何设备都可能引起环境磁场的变化。 减小环境对传感器测量影响的方法之一是用磁屏蔽,将电流走线和霍尔效应传感器封起来。如图7,显示了将走线和磁场强度传感器包起来的金属外壳。这个金属外壳称为“法拉第笼”。
图7。通过屏蔽导体和传感器可改进弱磁场测量效果 图7中的屏蔽应当以尽可能小的阻抗接地,因为大地是最稳定的参照基准,这样接可以改善屏蔽的效果。 最近,新出了一种集成了电流通路,温度补偿,和屏蔽外壳的霍尔效应传感器。其电流通路的集成,可以使电流走线与传感器芯片的距离固定下来,简化了流过导体的电流与传感器输出电压之间的增益计算。集成化的解决方案可简化霍尔效应传感器在实际测量应用中的布局和设计,因为用户无需担心导体与传感器的间距以及传感器所在的环境。图8是这种集成解决方案的简化电路图。
图8。集成电流通路的霍尔效应传感器简化电路图 结束语 虽然每种采样电流的方案都不是完美的,但知道各种方法的优缺点,将有助于设计工程师选择最适合其系统的解决方案。 |